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Abstract. A new method for calculating multipole moments with eigenfunctions related to
Sturm–Liouville problems is proposed. The method is based on an auxiliary third-order equation
and its Laplace transform. The multipole moments for Coulomb and oscillator problems in quantum
mechanics are calculated as an application of this method. The relation between the multipole
moments for these problems and equations of Heun type is observed.

1. Introduction

There are two purposes of this paper. The first is to present a new, practical and efficient method
for calculating multipole moments with eigenfunctions related to boundary problems for the
one-dimensional Schrödinger-type equation. The other purpose is to show that multipole
moments arising from Coulomb and oscillator potentials are expressed in terms of solutions
of the Heun equation and the biconfluent Heun equation [1].

Considerψn(z), andλn to be eigenfunctions and eigenvalues, respectively, of the boundary
problem

(−L + λ)ψ = d

dz

(
r(z)

d

dz
ψ(z)

)
+ (λ− q(z))ψ(z) = 0

|ψ(z1)| <∞ |ψ(z2)| <∞
(1)

wherez1, z2 are the endpoints of the interval of consideration (finite or infinite). Suppose that
the following orthogonality condition is satisfied:∫ z2

z1

ψn(z)ψm(z) dz = δnm
whereδnm is the Kronecker symbol. It is assumed that the functionr(z) is a polynomial and
q(z) is a rational function, and also thatz1, z2 are singularities of equation (1)‡. By multipole
moments we mean the integrals

V (k)nn =
∫ z2

z1

zk ψn(z) ψn(z) dz (2)

† On leave from: State University of St Petersburg Department of Computational Physics.E-mail address:
slav@slav.usr.pu.ru
‡ If we multiply the equation by the denominator ofr(z) we find that it has polynomial coefficients. Moreover, the
eigenvalue parameterλ should be one of the so-called accessory parameters of the equation. This obstacle induces
further limitations on the properties of singularities of the equation.
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wherek is a positive integer. They might also be called diagonal matrix elements for multipole
perturbation. Two conventional methods are used for the explicit evaluation ofV (k)nn in the
simplest cases ofr(z) andq(z). The first method is to use the integral∫ z2

z1

zk ψn(z)(−L + λ)ψn(z) dz

substituting a simple representation ofψn and integrating by parts. The other method is to use
the group-theory approach. Here, another method is proposed, based on the transform to an
auxiliary third-order equation and its Laplace transform.

2. General theory

The first step in the general method is based on the following well known lemma.

Lemma 1. The squarewn(z) = (ψn(z))2 of the eigenfunction in (1) satisfies the third-order
equation

rw′′′ + 3r ′w′′ +
(
r ′′ +

(r ′)2

r
+ 4(λ− q)

)
w′ +

(
2(λ− q)r

′

r
− 2q ′

)
w = 0. (3)

For the sake of completeness we give here the draft of computations leading to the proof
of the lemma. The derivatives of the functionwn(z) are

w′ = 2ψψ ′ w′′ = 2(ψψ ′′ + (ψ ′)2) w′′′ = 2(ψψ ′′′ + 3ψ ′ψ ′′).

As a result of differentiating equation (1) the third-order equation

ry ′′′ + 2r ′y ′′ + r ′′y ′ + (λ− q)y ′ − q ′y = 0

holds. Multiplying this formula byy and also using equation (1) we obtain equation (3).
In [2] the notion of the s-rank for the singularity of a second-order linear ordinary

differential equation (ODE) with rational coefficients was introduced. Here, the definition
of the s-rank is extended to an equation of arbitrary order. Suppose that thenth-order linear
ODE is written as

v(n)(z) +Q1(z)v
(n−1)(z) +Q2(z)v

(n−2)(z) + · · · +Qn(z) v(z) = 0 (4)

with rational functionsQn(z). Let z = z∗ be a singularity of equation (4). Then in a
neighbourhood ofz∗ the functionsQm,m = 1, . . . , n are either regular or have poles of
orderKm.

Definition. The s-rankR(z∗) is a quantitative characteristic feature of the singularityz∗ which
for an irregular singularity is defined by the formula

R(z∗) = max(K1,K2/2, . . . , Kn/n). (5)

The s-rank of the regular singularity is by definition equal to unity.

The s-rank of an irregular singularity is either a positive integer larger than unity or a
fraction, the denominator of which is not larger than the order of the equation. The singularity
at infinity is studied with the help of a M̈obius transformation to a finite point.

In terms of this definition another lemma might be proven.

Lemma 2. The singularities of equations (1) and (3) and their s-ranks coincide.
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Proof. The only singularities for both equations (1) and (3) are zeros of the functionr(z),
poles of the functionq(z) and, possibly, the point at infinity. Suppose that the singularityz∗

is the pole of orderk of the functionq(z) and is not a zero ofr(z). Then, it is a pole of order
k+1 of the functionq ′(z). In this case the lemma holds. Suppose now that the singularityz∗ is
the zero of orderk of the functionr(z) and is a regular point ofq(z). Then, the s-rank ofz∗ in
equation (1) is equal to max(1, k/2), whereas the s-rank of the same singularity in (3) is equal
to max(1, k/2, (k + 1)/3). Sincek/2 > (k + 1)/3 for k > 2, lemma 2 holds once again. The
case in whichz∗ is simultaneously the zero ofr(z) and the pole ofq(z) is studied in the same
way. The singularity at infinity may be transposed to a finite point by a Möbius transform.�

Multiplying equation (3) by the greater common divisor of the coefficients we can obtain
an equation with purely polynomial coefficientsPj (z), j = 0, 1, 2, 3,

P0(z)w
′′′(z) + P1(z)w

′′(z) + P2(z)w
′(z) + P3(z)w(z) = 0. (6)

In other terms equation (6) might be written as

T (z,D)w(z) = 0 D = d

dz
(7)

whereT (z,D) is a polynomial in both variablesz andD.
The next step is to apply an analogue of the Laplace transform town(z).

wn(z) 7→ un(p) un(p) =
∫ z2

z1

exp(−pz)wn(z) dz. (8)

Convergence of the integral is verified by the behaviour ofψn(z) at the endpoints. In fact, we
need convergence only in the neighbourhood ofp = 0.

The expansion of the functionun(p) in the neighbourhood of the origin is expressed in
terms of multipole moments

un(p) =
∞∑
0

V (k)nn (−p)k/k! :=
∞∑
0

gkp
k. (9)

On the other hand, according to easily modified properties of the Laplace transform, the
functionun(p) is a solution of the linear ordinary differential equation

T (−Dp, p)un(p) = 0. (10)

To obtain equation (10) it is only necessary to prove the following lemma.

Lemma 3. In the course of the transform from equation (7) to equation (10) the nonintegral
terms vanish.

Proof. Suppose that the singularityz = z1 is an irregular one. Then the eigensolutionψn(z)
due to self-adjointness of the equation decreases exponentially, whilez tends toz1. As a result
the nonintegral terms arising on integration by parts vanish. Suppose thatz = z1 is a finite
regular singularity. Two different cases should be studied:

(a) the functionq(z) is regular atz = z1;
(b) the functionq(z) has a simple pole atz = z1.

Otherwise, ifq(z) has a pole of higher order we obtain once again the irregular singularity.
The first case, (a), is a more difficult one. The functionr(z) has a simple zero atz = z1

(otherwise the pointz = z1 would be an ordinary point of equation (1)). As a result, the



1776 S Yu Slavyanov

polynomialsP0(z), P1(z), andP2(z) will be characterized by the following behaviour in the
neighbourhood ofz = z1:

P0(z) = (r ′(z1))
2(z− z1)

2(1 + o(z− z1))

P1(z) = 3(r ′(z1))
2(z− z1)(1 + o(z− z1)) (11)

P0(z) = (r ′(z1))
2(1 + o(z− z1)).

Without loss of generality it might be assumed thatz1 lies at the origin. Keeping only those
terms in the Laplace transform which are ‘leading’ from the point of view of local behaviour
at the origin we obtain, for equation (10)

(r ′(0))2[D2
p(t

3u(p)− w(0)p2 − w′(0)p − w′′(0))
−3Dp(t

2u(p)− w(0)p − w′(0)) + (tu(p)− w(0))] + · · · = 0 (12)

where terms containing higher differentiation and denoted by. . . are omitted. It is seen from
(12) that the terms arising from integration by parts are either ‘killed’ by differentiation or
cancel out. The terms in which a higher order of differentiation stands in front of the function
are ‘killed’ as well.

In case (b) higher orders of differentiation appear in each term and, moreover, the function
ψn(z) becomes zero atz = z1. Both obstacles make the proof easier. The regular point at
infinity might be studied by a M̈obius transform to a finite point. The second endpoint of the
interval is studied as the first one. This completes the proof. �

Now we formulate the main result of the paper.

Theorem. The multipole momentsV (k)nn related to a Sturm–Liouville problem (1) are, up to
a multiple (−1)kk!, equal to the coefficients of the Taylor series of the regular solution of
equation (10), which resembles the Laplace transform of the auxiliary third-order equation (3)
for the square of the eigenfunction.

The proof is given above.

3. Examples

First the following boundary problem is studied:

d

dz

(
z

d

dz
ψ(z)

)
+

(
λ− z

4
− (l + 1

2)
2

z2

)
ψ(z) = 0

|ψ(0)| <∞ |ψ(∞)| <∞.
(13)

Here, the integerl is related to the orbital momentum. Eigenfunctionsψn(z) comprise the
so-called Sturmian basis in the quantum Coulomb problem and eigenvalues are known to be

λn = n + l + 1. (14)

For simplicity we introduce new parametersN = n + l + 1,L = l(l + 1). Then, the auxiliary
third-order equation in the form (6) becomes

z2w′′′ + 3zw′′ + (−z2 + 4Nz− 4L)w′ + (−z + 2N)w = 0. (15)

After a Laplace transform we obtain

p(p2 − 1)u′′(p) + (3p2 − 4Np − 1)u′(p)− (4Lp + 2N)u(p) = 0. (16)
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Equation (16) is a special case of the Heun equation [1]

p(p − 1)(p − t)v′′(p) + (c(p − 1)(p − t) + dp(p − t)
+(a + b + 1− c − d)p(p − 1))v′(p) + (abp − µ)v(p) = 0. (17)

The coefficientsgk of the expansion of the regular in the vicinity of the zero solutionv(z) of
equation (17) satisfy the following three-term recurrence relation:

t (k + 1)(k + t)gk+1− ((t + 1)(k + 1)(k + c + d) + (a + b + 1− c)(k + 1)− µ)gk
+(k(k + a + b) + ab)gk−1 = 0 g0 = 1. (18)

Comparing equation (17) with (16) it is easy to obtain that equation (16) is derived from
equation (17) using the following parameter values:

t = −1 c = 1 d = 1− 2N a = 2(l + 1) b = −2l.

For these values of the parameters, equation (18) yields

(1− k2)gk+1− (2(k + 1)− 2N)gk + (k(k + 2)− 4L)gk−1 = 0. (19)

If the coefficientsgk are substituted for multipole momentsV (k)nn equation (19) converts to the
recurrence relation

(1− k)V (k+1)
nn + (2(k + 1)− 2N)V (k)nn + k(k(k + 2)− 4L)V (k−1)

nn = 0. (20)

Another physical example is the quantum oscillator for which the boundary problem is
posed on the whole axis−∞,∞,

ψ ′′(z) + (λ− z2)ψ(z) = 0

|ψ(−∞)| <∞ |ψ(∞)| <∞.
(21)

The eigenfunctionsψn and the eigenvaluesλn are known to be

λn = 2n + 1.

The auxiliary third-order equation reads

w′′′(z) + 4(λ− z2)w′(z)− 4zw(z) = 0 (22)

whereas after a Laplace transform we obtain

pu′′(p) + u′(p)− (λp + 1
4p

3)u(p) = 0. (23)

Equation (23) is a special case of the biconfluent Heun equation. It is invariant under the
inversion transformp 7→ −p. As a consequence of this property, equation (23) may be
transformed into a simpler equation, namely to a confluent hypergeometric equation. For this
purpose the transform of the independent variable

p2 = x
is needed. The resulting equation reads

4xu′′(x) + 4u′(x)− (λ + x/4)u(x) = 0. (24)

However, for our purpose equation (23) is sufficient. The regular atz = 0 solution of
equation (23) is sought in the form of a power series

un(p) =
∞∑
0

gkp
2k. (25)

The coefficientsgk satisfy the three-term recurrence relation

16(k + 1)2gk+1− 4(2n + 1)gk − gk−1 = 0. (26)
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For the multipole momentsV (2k)nn equation (19) converts to the recurrence relation

k + 1

k + 1
2

V (2k+2)
nn − (2n + 1)V (2k)nn − k(k − 1

2)V
(2k−2)
nn = 0. (27)

Formulae (20) and (27) are the only examples (at least known to the author) of multipole
moments closely related to equations of Heun class. Of course, they might be found in many
other publications but in another context.

4. Conclusions

The third simple example which could be exposed in this paper is the example with one
more type of classical orthogonal polynomial—Jacoby polynomials (taking Gegenbauer and
Legendre polynomials as specialized cases). We do not present this example here, since it does
not fit our second goal—the corresponding equation after Laplace transform does not belong
to the Heun class.

These examples, taken together in general, include all those cases for which the proposed
method delivers explicit results. The reason for this is that in these cases we have an explicit
expression for the eigenvalues in the starting boundary conditions. All other calculations with
more sophisticated starting equations (with polynomial coefficients!) require knowledge of
eigenvalues. The latter can be obtained numerically or asymptotically if some parameter is
assumed to be small. Briefly, we can list the problems where such techniques may be applied:
the two Coulomb centres problem, the anharmonic oscillator, the Stark effect in hydrogen, etc.
Exposing these examples requires a comparison with numerical results. A possible extension
of the proposed method is to take functions other than exponents as weight functions. It is
only required that the auxiliary third-order equation has polynomial coefficients. However, it
seems rather complicated to construct a general theory for this case, although special cases
can be treated.
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